Grammar Efficiency and the One-Meaning-One-Form Principle

Relja Vulanović

Department of Mathematical Sciences
Kent State University at Stark
North Canton, Ohio, USA

QUALICO 2018

Overview

- A measure of how much Anttila's (1972) OneMeaning - One-Form Principle (the Principle) is violated has been proposed in (Vulanović \& Ruff, QUALICO 2016).
- The measure is now incorporated in a new formula for calculating grammar efficiency.
- This is exemplified by parts-of-speech (PoS) systems in the sense of (Hengeveld, 1992).

Contents

- Measures of the degree of violation of the Principle
- Hengeveld's PoS systems
- The old grammar-efficiency formula
- The new grammar-efficiency formula
- Results
- Conclusions

Notation

- $|A|$ is the number of elements of a finite nonempty set A.
- $X=$ set of meanings, $Y=$ set of forms
- Set of pairs (relation): $\Phi \subseteq X \times Y$
- $B=$ set of one-to-one pairs:

$$
\begin{aligned}
& B=\{(x, y) \in \Phi: \xi(y)=v(x)=1\} \\
& \xi(y)=|\{x \in X:(x, y) \in \Phi\}|, y \in Y \\
& v(x)=|\{y \in Y:(x, y) \in \Phi\}|, x \in X
\end{aligned}
$$

Basic Facts

- $|B| \leq|\Phi|$
- If Φ is a bijection (a one-to-one correspondence) between X and Y, then $|X|=|Y|=|\Phi|=|B|$.

The Measure $\mu(\Phi)$

1

1. $\mu(\Phi)=1$ if Φ is a bijection; otherwise $\mu(\Phi)>1$
2. $\mu(\Phi)$ is greater if $|\Phi|$ is greater and if $|X|$ and $|Y|$ are smaller
3. $\mu(\Phi)$ is smaller if $|B|$ is greater
4. $\mu(\Phi)=\mu\left(\Phi^{-1}\right), \Phi^{-1}=\{(y, x):(x, y) \in \Phi\}$

The Measure $\mu(\Phi)$

2

- QUALICO 2016

$$
\mu(\Phi)=\mu_{\theta}(\Phi):=\frac{(1+\theta)|\Phi|-\theta|B|}{\min \{|X|,|Y|\}}, \theta>0
$$

- A simplified formula considered here:

$$
\mu(\Phi)=\frac{|\Phi|-|B|}{\min \{|X|,|Y|\}}+1 \geq 1
$$

- Properties 1-4 satisfied.

The Weighted Formula

$$
\mu(\Phi)=\frac{\|\Phi\|-\|B\|}{\min \{\|X\|,\|Y\|\}}+1
$$

- $\|A\|=w_{1}+w_{2}+\cdots+w_{n},|A|=n$

$$
w_{i}=w_{i}(A), \quad \min w_{i}=1
$$

- If $w_{1}=w_{2}=\cdots=w_{n}=1$, then $\|A\|=|A|$ and v.v.

PoS Systems: Propositional Functions

- $X=$ set of propositional functions (syntactic slots):
$\mathrm{P}=$ head of predicate phrase $R=$ head of referential phrase $r=o p t i o n a l ~ m o d i f i e r ~ o f ~ r e f e r e n t i a l ~ p h r a s e ~$ $p=o p t i o n a l ~ m o d i f i e r ~ o f ~ p r e d i c a t e ~ p h r a s e ~$
- $|X|=l=$ number of propositional functions in a PoS system, $1 \leq l \leq 4$.

$Y=$ set of word classes, $|Y|=k$

Word class	P	R	r	p
Verbs	V	-	-	-
Nouns	-	N	-	-
Adjectives	-	-	a	-
Manner adverbs	-	-	-	m
Heads	H	H	-	-
Predicatives	F	-	-	F
Nominals	-	\#	\#	-
Modifiers	-	-	M	M
*	X_{1}	-	X_{1}	-
*	-	X_{2}	-	X_{2}
Non-verbs	-	^	^	^
*Non-nouns	Z	-	Z	Z
*	X_{3}	X_{3}	X_{3}	-
*	X_{4}	X_{4}	-	X_{4}
Contentives	C	C	C	C

Weights

1

- Weight of $\mathrm{P}=\alpha$

\boldsymbol{l}	Propositional functions in the PoS system
4	PRrp
$\mathbf{3}$	PRr
$\mathbf{3}$	PRP
$\mathbf{2}$	PR
$\mathbf{1}$	P

$$
\alpha=2.5, \beta=2, \gamma=\delta=1
$$

Weights

2

- $\|X\|$ is the sum of weights of propositional functions:
$\|X\|=\alpha+\beta+l-2$ if $l=2,3,4 ;$
$\|X\|=\alpha$ if $l=1$
- Weights of Φ (same for B): If $(x, y) \in \Phi$, its weight is defined as $w(x) w(y)$.

Weights of Word Classes

- For $y \in Y$, define $w(y)$ as the number of horizontally and vertically connected cells in the scheme

```
Head
Modifier
```

Predication

Weights of Word Classes

- For instance, $w(\Lambda)=3$

	Head	Modifier
Predication	-	Λ
Reference	Λ	Λ

- $w\left(\mathrm{X}_{1}\right)=3$

- Flexibility of word classes is penalized.

PoS System Types

- Rigid PoS systems ($k=l, \mu=1$):

VNam, VNa $\emptyset, ~ V N \varnothing m, ~ V N \varnothing \emptyset, ~ V \emptyset \varnothing \varnothing ~$
(word classes are listed in the order which corresponds to the PRrp order of propositional functions they convey)

- Flexible PoS systems: $k<l$

Flexible PoS System Types, $l=2,3$

l	k	PoS system type	μ
2	1	ННФ \quad	5.500
3	2	VA円	3.000
		尹NØ ${ }^{\text {P }}$	3.333
		$\mathrm{VX}_{2} \varnothing \mathrm{X}_{2}$	3.250
		$\mathrm{X}_{1} \mathrm{NX}_{1} \varnothing$	3.625
		ННа $\varnothing / \mathrm{HH} \varnothing \mathrm{m}$	4.000
	1	$\mathrm{X}_{3} \mathrm{X}_{3} \mathrm{X}_{3} \varnothing / \mathrm{X}_{4} \mathrm{X}_{4} \varnothing \mathrm{X}_{4}$	6.500

Flexible PoS System Types, $l=4$

l	k	PoS system type	μ
4	3	VNMM	2.000
		VAmm	2.500
		FNaF	2.750
		$\mathrm{VX}_{2} \mathrm{aX}_{2}$	2.800
		$\mathrm{X}_{1} \mathrm{NX}_{1} \mathrm{~m}$	3.100
		HHam	3.250
	2	V $\wedge \wedge \wedge$	4.000
		ZNZZ	4.375
		P/HHMM	4.250
		$\mathrm{X}_{4} \mathrm{X}_{4} \mathrm{aX}_{4} / \mathrm{X}_{3} \mathrm{X}_{3} \mathrm{X}_{3} \mathrm{~m}$	5.125
		$\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{2}$	4.250
	1	CCCC	7.500

Absolute Grammar Efficiency

$$
A E=Q \frac{\mid \text { Information } \mid}{\mid \text { Conveyors } \mid}=Q \frac{|X|}{|Y|}=Q \frac{l}{k}
$$

The coefficient of proportionality Q depends on the complexity of the grammatical rules transforming the input Y to the output X :

- Q depends on Φ and
- on word order or the permitted orders of propositional functions

Previous Approach to Grammar

Efficiency

- Parsing ratio:

$$
Q=Q_{o}:=\frac{s}{a}
$$

- s is the number of unambiguous sentences (strings of word classes) permitted in the PoS system
- a is the number of all parsing attempts of all permutations of each sentence in the PoS system (it is assumed that modifiers stand next to their heads)

Turkish PoS System

- $l=4$
- $k=3$, word classes: $\mathrm{V}, \wedge, \mathrm{M}$
(more complicated than the basic types considered above $\mathrm{b} / \mathrm{c} \wedge$ and M overlap)
- Orders of propositional functions: RP, rRP, RpP, rRpP
- Sentences: $\wedge V, \Lambda \wedge V$ - ambiguous , M $\wedge V$, $\wedge M V$, $\wedge \wedge \wedge V, M \wedge \wedge V, ~ \wedge \wedge M V, M \wedge M V$

$$
s=7
$$

Turkish PoS System

- Calculating a is complicated:
$a=100$, after parsing 32 sentences

$$
A E_{o}=\frac{7}{100} \cdot \frac{4}{3}=\frac{7}{75}=0.0933
$$

- This is low because of the overlapping roles of Λ and M and because of the fixed order of propositional functions

An Example of Parsing Attempts

- $\Lambda \Lambda V \rightarrow \operatorname{RrP}|\underline{R p P}| \underline{r R P \mid p-}$
- The approach of "regulated rewriting" is taken.
- Two possible interpretations (underlined) are left. This is why $\Lambda \wedge \mathrm{V}$ is an ambiguous sentence.
- Other permutations ($\wedge \mathrm{V} \wedge$ and $\mathrm{V} \wedge \wedge$) are parsed in the same way...

New Approach to Grammar Efficiency

The role of a within the parsing ratio is dual:

- It is part of the measure of word-order flexibility/rigidity (all permutations of each possible sentence are considered)
- It also represents indirectly how far the relation Φ is from a bijection (all parsing attempts are considered)
The latter is not related to parsing and can be measured by μ.

The New Formula

$$
Q=Q_{n}:=\frac{q}{\mu}
$$

- $q=\frac{s}{m}$ - only measures the flexibility of word order, $m=\max \{\hat{s}, f(l)\}$
- \hat{s} is the number of all possible sentences, unambiguous or not
- $f(l)$ is the maximum possible number of orders of propositional functions
- $f(4)=18, f(3)=6, f(2)=2, f(1)=1$

Turkish PoS System

 3- $m=\max \{32,18\}=32$ (all 32 possible sentences have to be counted, but they do not have to be parsed)
- $q=\frac{7}{32}, \quad \mu=\frac{3 \beta+10}{6}+1=\frac{11}{3}$

$$
\begin{gathered}
A E_{n}=\frac{3}{11} \cdot \frac{7}{32} \cdot \frac{4}{3}=0.0795 \\
\text { (cf. } A E_{\mathrm{o}}=0.0933 \text {) }
\end{gathered}
$$

Relative Grammar Efficiency 1

$$
R E=R E(G)=\omega A E
$$

- G is the grammar of a PoS system with $|X|=l$ and $|Y|=k$
- A maximally efficient grammar in this class has the greatest value of $A E$ and should satisfy certain properties (for instance, it should not permit ambiguity)
- If the maximally efficient grammar exists, its $R E$ is set equal to 1

Relative Grammar Efficiency

2

- When the maximally efficient grammar exists and its $A E$ is $A E^{*}$, then $\omega=\frac{1}{A E^{*}}$. This results in

$$
R E=\frac{Q}{Q^{*}},
$$

where Q^{*} is the greatest value of Q for all grammars with $|X|=l$ and $|Y|=k$.

- Otherwise, set $\omega=1$ and $R E=A E$.

Turkish PoS System: Old Approach

- Calculating Q_{o}^{*} is also complicated: $Q_{o}^{*}=\frac{5}{8}$, after exploring all grammars with all 4 propositional functions and 3 word classes
- Values of Q_{o}^{*} are calculated for all k and l in (Vulanović, 2008)
- Relative efficiency of the Turkish PoS system is

$$
R E_{o}=\frac{Q_{0}}{Q_{o}^{*}}=\frac{7}{100} \div \frac{5}{8}=\frac{14}{125}=0.112
$$

Turkish PoS System: New Approach

- Calculating Q_{n}^{*} is not so complicated: $Q_{n}^{*}=0.445$ (VNMM)

$$
\begin{gathered}
R E_{n}=\frac{Q_{n}}{Q_{n}^{*}}=\frac{3}{11} \cdot \frac{7}{32} \div 0.445=0.134 \\
\text { (cf. } R E_{o}=0.112 \text {) }
\end{gathered}
$$

Attested PoS System Types

- according to Hengeveld and van Lier (2010).
- This includes systems which are not attested in their "pure" form, but in combination with other types of systems.
- All 5 rigid systems ($k=l, \mu=1$), VNam, VNa $\emptyset, ~ V N \varnothing m, ~ V N \varnothing \varnothing$, and $V \varnothing \varnothing \varnothing$, plus 8 flexible PoS systems
- The greatest values of $R E$ w.r.t. word order are calculated on the next slide.

Greatest Values of $R E$ for Attested PoS System Types

Type	$R E_{0}$	$R E_{n}$
CCCC	0.286	0.015
V $\wedge \wedge \wedge$	0.728	0.797
Pan	0.786	0.667
VNMM	0.914	1
VAmm	0.800	0.600
V\#\# \varnothing	1	0.867
$\mathrm{X}_{3} \mathrm{X}_{3} \mathrm{X}_{3} \varnothing$	1	1
$Н Н \varnothing \varnothing ~$	1	1
5 Rigid Types	1	1
Coefficient of Correlation	0.960	

Conclusions

- The new measure is much easier to calculate than the old one.
- The correlation of the old and new values for $R E$ is strong for the 13 attested PoS system types.
- It is somewhat weaker when all PoS system types are taken into account: $r=0.807$.
- Other PoS systems, which (like the Turkish PoS system) are more complicated than the basic ones, can now be approached more easily.

Dziękuję bardzo!

