Grammar Efficiency and the One-Meaning–One-Form Principle

Relja Vulanović

Department of Mathematical Sciences Kent State University at Stark North Canton, Ohio, USA

QUALICO 2018

Overview

- A measure of how much Anttila's (1972) One-Meaning – One-Form Principle (the Principle) is violated has been proposed in (Vulanović & Ruff, QUALICO 2016).
- The measure is now incorporated in a new formula for calculating grammar efficiency.
- This is exemplified by parts-of-speech (PoS) systems in the sense of (Hengeveld, 1992).

Contents

- Measures of the degree of violation of the Principle
- Hengeveld's PoS systems
- The old grammar-efficiency formula
- The new grammar-efficiency formula
- Results
- Conclusions

Notation

- |A| is the number of elements of a finite nonempty set A.
- X = set of meanings, Y = set of forms
- Set of pairs (relation): $\Phi \subseteq X \times Y$
- *B* = set of one-to-one pairs:

$$B = \{(x, y) \in \Phi : \xi(y) = v(x) = 1\}$$

$$\xi(y) = |\{x \in X : (x, y) \in \Phi\}|, y \in Y \\ v(x) = |\{y \in Y : (x, y) \in \Phi\}|, x \in X$$

Basic Facts

- $|B| \leq |\Phi|$
- If Φ is a bijection (a one-to-one correspondence) between X and Y, then |X| = |Y| = |Φ| = |B|.

The Measure $\mu(\Phi)$

- 1. $\mu(\Phi) = 1$ if Φ is a bijection; otherwise $\mu(\Phi) > 1$
- 2. $\mu(\Phi)$ is greater if $|\Phi|$ is greater and if |X| and |Y| are smaller
- 3. $\mu(\Phi)$ is smaller if |B| is greater
- 4. $\mu(\Phi) = \mu(\Phi^{-1}), \ \Phi^{-1} = \{(y, x) : (x, y) \in \Phi\}$

The Measure $\mu(\Phi)$

• QUALICO 2016

$$\mu(\Phi) = \mu_{\theta}(\Phi) \coloneqq \frac{(1+\theta)|\Phi| - \theta|B|}{\min\{|X|, |Y|\}}, \theta > 0$$

- A simplified formula considered here: $\mu(\Phi) = \frac{|\Phi| - |B|}{\min\{|X|, |Y|\}} + 1 \ge 1$
- Properties 1-4 satisfied.

The Weighted Formula

$$\mu(\Phi) = \frac{\|\Phi\| - \|B\|}{\min\{\|X\|, \|Y\|\}} + 1$$

- $||A|| = w_1 + w_2 + \dots + w_n$, |A| = n $w_i = w_i(A)$, $\min w_i = 1$
- If $w_1 = w_2 = \dots = w_n = 1$, then ||A|| = |A|and v.v.

PoS Systems: Propositional Functions

- X = set of propositional functions (syntactic slots):
 - P = head of predicate phrase
 - R = head of referential phrase
 - r = optional modifier of referential phrase p = optional modifier of predicate phrase
- |X| = l = number of propositional functions in a PoS system, $1 \le l \le 4$.

Y = set of word classes, |Y| = k

Word class	Р	R	r	р
Verbs	V	-	-	-
Nouns	-	Ν	-	-
Adjectives	-	-	а	-
Manner adverbs	-	-	-	m
Heads	Н	Н	-	-
Predicatives	₽	-	-	₽
Nominals	-	₩	₩	-
Modifiers	-	-	Μ	Μ
*	X ₁	-	X ₁	-
*	-	X ₂	-	X ₂
Non-verbs	-	Λ	Λ	Λ
*Non-nouns	Z	-	Z	Z
*	X ₃	X ₃	X ₃	-
*	X_4	X_4	-	X ₄
Contentives	С	С	С	С

Weights

- Weight of $P = \alpha$
- Weight of $R = \beta$
- Weight of $r = \gamma$
- Weight of $p = \delta$

	Propositional functions
l	in the PoS system
4	PRrp
3	PRr
3	PRp
2	P R
1	Р

 $lpha=2.5, eta=2, \gamma=\delta=1$

1

Weights

• ||*X*|| is the sum of weights of propositional functions:

$$||X|| = \alpha + \beta + l - 2 \text{ if } l = 2,3,4;$$

$$||X|| = \alpha \text{ if } l = 1$$

• Weights of Φ (same for *B*): If $(x, y) \in \Phi$, its weight is defined as w(x)w(y).

Weights of Word Classes

 For y ∈ Y, define w(y) as the number of horizontally and vertically connected cells in the scheme

	Head	Modifier
Predication	-	-
Reference	-	-

Weights of Word Classes

• For instance, $w(\Lambda) = 3$

	Head	Modifier
Predication	-	٨
Reference	٨	٨

•
$$w(X_1) = 3$$

	Head	Modifier
Predication	X ₁	-
Reference	-	X ₁

• Flexibility of word classes is penalized.

PoS System Types

 Rigid PoS systems (k = l, μ = 1): VNam, VNaØ, VNØm, VNØØ, VØØØ (word classes are listed in the order which corresponds to the PRrp order of propositional functions they convey)

• Flexible PoS systems: k < l

Flexible PoS System Types, l = 2,3

l	k	PoS system type	μ
2	1	HHØØ	5.500
3	2	V₦₦Ø	3.000
		₽NØ₽	3.333
		$VX_2 \phi X_2$	3.250
		$X_1NX_1Ø$	3.625
		HHaØ/HHØm	4.000
	1	$X_3 X_3 X_3 Ø / X_4 X_4 Ø X_4$	6.500

Flexible PoS System Types, l = 4

l	k	PoS system type	μ
4	3	VNMM	2.000
		V₦₦m	2.500
		₽Na₽	2.750
		VX ₂ aX ₂	2.800
		X ₁ NX ₁ m	3.100
		HHam	3.250
	2	νλλ	4.000
		ZNZZ	4.375
		₽₩₩₽/ННММ	4.250
		$X_4 X_4 a X_4 / X_3 X_3 X_3 m$	5.125
		$X_1 X_2 X_1 X_2$	4.250
	1	CCCC	7.500

Absolute Grammar Efficiency

$$AE = Q \frac{|\text{Information}|}{|\text{Conveyors}|} = Q \frac{|X|}{|Y|} = Q \frac{l}{k}$$

The coefficient of proportionality *Q* depends on the complexity of the grammatical rules transforming the input *Y* to the output *X*:

- *Q* depends on Φ and
- on word order or the permitted orders of propositional functions

Previous Approach to Grammar Efficiency

• Parsing ratio:

$$Q = Q_o := \frac{s}{a}$$

- s is the number of unambiguous sentences (strings of word classes) permitted in the PoS system
- *a* is the number of all parsing attempts of all permutations of each sentence in the PoS system (it is assumed that modifiers stand next to their heads)

Turkish PoS System

- *l* = 4
- k = 3, word classes: V, Λ, M
 (more complicated than the basic types considered above b/c Λ and M overlap)
- Orders of propositional functions: RP, rRP, RpP, rRpP
- Sentences: ΛV, ΛΛV ambiguous , ΜΛV, ΛΜV, ΛΛΛV, ΜΛΛV, ΛΛΜV, ΜΛΜV

$$s = 7$$

Turkish PoS System

Calculating *a* is complicated:
 a = 100, after parsing 32 sentences

$$AE_o = \frac{7}{100} \cdot \frac{4}{3} = \frac{7}{75} = 0.0933$$

 This is low because of the overlapping roles of Λ and M and because of the fixed order of propositional functions

An Example of Parsing Attempts

- $\Lambda\Lambda V \rightarrow RrP \mid \underline{RpP} \mid \underline{rRP} \mid p$ -
- The approach of "regulated rewriting" is taken.
- Two possible interpretations (underlined) are left. This is why ΛΛV is an ambiguous sentence.
- Other permutations (ΛVΛ and VΛΛ) are parsed in the same way...

New Approach to Grammar Efficiency

The role of *a* within the parsing ratio is dual:

- It is part of the measure of word-order flexibility/rigidity (all permutations of each possible sentence are considered)
- It also represents indirectly how far the relation Φ is from a bijection (all parsing attempts are considered)

The latter is not related to parsing and can be measured by μ .

The New Formula

$$Q = Q_n := \frac{q}{\mu}$$

- $q = \frac{s}{m}$ only measures the flexibility of word order, $m = \max{\hat{s}, f(l)}$
- *ŝ* is the number of all possible sentences, unambiguous or not
- *f*(*l*) is the maximum possible number of orders of propositional functions

•
$$f(4) = 18, f(3) = 6, f(2) = 2, f(1) = 1$$

Turkish PoS System

m = max{32,18} = 32 (all 32 possible sentences have to be counted, but they do not have to be parsed)

•
$$q = \frac{7}{32}, \ \mu = \frac{3\beta + 10}{6} + 1 = \frac{11}{3}$$

 $AE_n = \frac{3}{11} \cdot \frac{7}{32} \cdot \frac{4}{3} = 0.0795$
(cf. $AE_o = 0.0933$)

Relative Grammar Efficiency

$RE = RE(G) = \omega AE$

- G is the grammar of a PoS system with |X| = land |Y| = k
- A maximally efficient grammar in this class has the greatest value of AE and should satisfy certain properties (for instance, it should not permit ambiguity)
- If the maximally efficient grammar exists, its *RE* is set equal to 1

Relative Grammar Efficiency

• When the maximally efficient grammar exists and its AE is AE*, then $\omega = \frac{1}{AE^*}$. This results in

2

$$RE = \frac{Q}{Q^*},$$

where Q^* is the greatest value of Q for all grammars with |X| = l and |Y| = k.

• Otherwise, set $\omega = 1$ and RE = AE.

Turkish PoS System: Old Approach

• Calculating Q_o^* is also complicated:

 $Q_o^* = \frac{5}{8}$, after exploring all grammars with all 4 propositional functions and 3 word classes

- Values of Q^{*}_o are calculated for all k and l in (Vulanović, 2008)
- Relative efficiency of the Turkish PoS system is

$$RE_o = \frac{Q_0}{Q_o^*} = \frac{7}{100} \div \frac{5}{8} = \frac{14}{125} = 0.112$$

Turkish PoS System: New Approach

• Calculating Q_n^* is not so complicated: $Q_n^*=0.445$ (VNMM)

$$RE_n = \frac{Q_n}{Q_n^*} = \frac{3}{11} \cdot \frac{7}{32} \div 0.445 = 0.134$$

(cf. *RE*_o = 0.112)

Attested PoS System Types

- according to Hengeveld and van Lier (2010).
- This includes systems which are not attested in their "pure" form, but in combination with other types of systems.
- All 5 rigid systems (k = l, μ = 1),
 VNam, VNaØ, VNØm, VNØØ, and VØØØ,
 plus 8 flexible PoS systems
- The greatest values of *RE* w.r.t. word order are calculated on the next slide.

Greatest Values of *RE* for Attested PoS System Types

Туре	RE _o	RE _n
сссс	0.286	0.015
νλν	0.728	0.797
₽₩₩₽	0.786	0.667
VNMM	0.914	1
V NN m	0.800	0.600
V NN Ø	1	0.867
X ₃ X ₃ X ₃ Ø	1	1
ннǿø	1	1
5 Rigid Types	1	1
Coefficient of Correlation	0.960	

Conclusions

- The new measure is much easier to calculate than the old one.
- The correlation of the old and new values for *RE* is strong for the 13 attested PoS system types.
- It is somewhat weaker when all PoS system types are taken into account: r = 0.807.
- Other PoS systems, which (like the Turkish PoS system) are more complicated than the basic ones, can now be approached more easily.

Dziękuję bardzo!