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Introduction
Discovery of the chronological or geographical distribution of collections of historical text can be 
more reliable when based on multivariate rather than on univariate data because, assuming that 
the variables describe different aspects of the texts in question, multivariate data necessarily 
provides a more complete description. Where the multivariate data is high-dimensional, however, 
its complexity can defy analyis using traditional philological methods. Increasingly, the first step in 
interpreting such complexity is cluster analysis because it gives insight into structure latent in the 
data, thereby facilitating hypotheses which can then be tested using a range of other mathematical 
and statistical methods (Moisl 2015).

The present discussion addresses an issue in cluster analysis whose importance in quantitative 
and corpus linguistics has, in my view, thus far not been sufficiently well appreciated: the possibility
that the data is nonlinear. Most applications of cluster analysis in these fields use linear proximity 
measures which simply ignore any nonlinearity, and, if the data really is significantly nonlinear, can 
give misleading results.

The discussion is in three main parts: the first part outlines the nature of nonlinearity in data 
generally and in linguistic data specifically, the second shows why nonlinearity is a problem for 
linear clustering methods, and the third shows how topological mapping can be used to cluster 
high-dimensional data in a way that takes any nonlinearity into account.

1. Nonlinearity
For greater detail on what follows, see (Moisl 2015, chapters 3 and 4).

1.1 Nonlinearity in natural processes
In natural processes there is a fundamental distinction between linear and nonlinear behavior. 
Linear processes have a constant proportionality between cause and effect. If a ball is kicked x 
hard and it goes y distance, then a 2x kick will appear to make it go 2y, a 3x kick 3y, and so on. 
Nonlinearity is the breakdown of such proportionality. In the case of our ball, the linear relationship 
increasingly breaks down as it is kicked harder and harder. Air and rolling resistance become 
significant factors, so that for, say, 5x it only goes 4.9 y, for 6x 5.7y, and again so on until eventually
it bursts and goes hardly any distance at all. Such nonlinear effects pervade the natural world and 
gives rise to a wide variety of complex and often unexpected --including chaotic—behaviours 
(Strogatz 2000; Bertuglia & Vaio 2005). 

1.2 Nonlinearity in data
Data is a description of objects from a domain of interest in terms of a set of variables such that
each  variable  is  assigned  a  value  for  each  of  the  objects.  Given  m objects  described  by  n
variables, a standard representation of data for computational analysis is a matrix M in which each
of the m rows represents a different object, each of the n columns represents a different variable,
and the value at Mi.j

 describes object i in terms of variable j, for i = 1..m, j = 1..n. The matrix thereby
makes the link between the researcher's conceptualization of the domain in terms of the semantics
of the variables s/he has chosen and the actual state of the world, and allows the resulting data to
be taken as a representation of the domain based on empirical observation.

M is linear when the functional relationships between all its variables, that is, the values in its 
columns, conform to the mathematical definition of linearity. In mathematics, a linear function f is 
one that satisfies the following properties, where x and y are variables and a is a constant (Lay 
2010):



 Additivity: f(x+y) = f(x) + f(y) -- adding the results of f applied to x and y separately is 
equivalent to adding x and y and then applying f to the sum.

 Homogeneity: f(ax) = af(x) -- multiplying the result of applying f to x by a constant is 
equivalent to multiplying x by the constant and then applying f to the result.

A function which does not satisfy these two properties is nonlinear, and so is a data matrix in which
the functional relationships between two or more of its columns are nonlinear.

Matrices have a geometrical interpretation. For each row vector of M:

• The dimensionality of the vector, that is, the number of its components n, defines an n-
dimensional Euclidean space. 

• The sequence of n numbers comprising the vector specifies the coordinates of the vector in
the space. 

• The vector itself is a point at the specified coordinates 

The set of row vectors in M defines a configuration of points in the n-dimensional space called the 
data manifold. 

Linear manifolds are shapes consisting of straight lines and flat planes and represent linear data,  
whereas nonlinear manifolds consist of curved lines and surfaces and represent nonlinear data; 
examples are given in Figure 1. 

Figure 1: Linear and nonlinear manifolds in two and three dimensional space

An essentially unlimited range of nonlinear manifolds is possible in any dimensionality. Figure 2
gives another example of a nonlinear manifold in three-dimensional space.



Figure 2: Nonlinear manifold in three dimensional space

1.3 Nonlinearity in linguistic data
Data abstracted from a natural process known to be linear is itself guanteed to be linear. Data 
abstracted from a known nonlinear process is not necessarily nonlinear, but may be. The human 
brain - the generator of language - is  a nonlinear dynamical system that exhibits highly complex 
physical behaviour in which nonlinearity arises on account of latency and saturation effects in 
individual neuron and neuron assemblies. One must, therefore, always reckon with the possibility 
that data abstracted from speech or text will be nonlinear.

2. The problem
The problem that nonlinearity poses for cluster analysis of high-dimensional multivariate data is
easily seen. Commonly-used methods such as PCA for projection into two- or three-dimensional
space for graphical display, or hierarchical analysis using proximity measures like the Euclidean,
are linear:  they take no account  of  any curvature in the  manifold,  and can thereby introduce
distortions into visualization results in some proportion to the degree of nonlinearity in the manifold.
This  is  shown  in  Figure  3  for  three-dimensional  data,  but  the  situation  extends  to  any
dimensionality.

Figure 3: Linear distance between points on a nonlinear manifold

3. Topological mapping

3.1 Topology
Topology is an aspect of mathematics that grew out of the vector space geometry we have been 
using so far in the discussion. Its objects of study are manifolds, but these are studied as spaces in
their own right, topological spaces, without reference to any embedding vector space and 
associated coordinate system (Lee 2010). Topology would, for example, describe the points which 
constitute the manifold embedded in the vector space of Figure 4a independently of the three-
dimensional coordinates, as in Figure 4b.



Figure 4: A manifold embedded in a three-dimensional doordinate system and as a topological
object

Topology replaces the concept of vector space and associated coordinate system with relative 
nearness of points to one another in the manifold as the mathematical structure defined on the 
underlying set; relative nearness of points is determined by a function which, for any given point p 
in the manifold, returns the set of all points within some specified proximity e to p. The set of all 
points in proximity e to p constitute the neighbourhood of p, as in Figure 5.

Figure 5: Overlapping topological neighborhoods on a manifold

3.2 Projection of topological structure into low-dimensional space
High-dimensional manifolds can be visualized as low-dimensional ones by means of projection in 
which the topology of the high-dimensional manifold, that is, the neighbourhood structure, is 
preserved in the low-dimensional one, so that points close to one another in high dimensions are 
close to one another in the low-dimensional projection. This can be conceptualized as in Figure 6, 
where a three-dimensional manifold is projected onto a two-dimensional surface.



Figure 6: Projection from three to two dimensions

3.3 Preservation of nonlinearity 
The set of neighbourhoods which constitutes the topology of a manifold by definition follows that 
surface of the manifold, whatever its shape. Because a projection preserves the topology, that 
shape is preserved - in other words, nonlinearity is preserved in the projection.

3.4 Example
The aim of this section is to show how topological mapping can be used to discover structure in 
high-dimensional multivariate data abstracted from a multi-document corpus. It does this by using 
a particular topological mapping method, the self-organizing map (SOM), to infer the relative 
chronology of a collection of Old English, Middle English, and Early Modern English texts from 
spelling data abstracted from them.

3.4.1 The text collection

Old English Middle English Early Modern English

Exodus Sawles Warde King James Bible

Phoenix Henryson, Testament of Cressid Campion, Poesie 

Juliana The Owl and the Nightingale Milton, Paradise Lost

Elene Malory, Morte Darthur Bacon, Atlantis 

Andreas Gawain and the Green Knight More, RichardIII

Genesis Morte Arthure Shakespeare, Hamlet

Beowulf KingHorn Jonson, Alchemist

Alliterative Morte Arthure

Bevis Of Hampton

Chaucer, Troilus 

Langland, Piers Plowman

York Plays 

Cursor Mundi



 3.4.2 Spelling data
Spelling is used as the basis for inference of the relative chronology of the above texts on the 
grounds that it reflects the phonetic, phonological, and morphological development of English over 
time. The variables used to represent spelling in the texts are letter pairs: for 'the cat sat', the first 
letter pair is (t,h), the second (h,e), the third (e,<space>), and so on. All distinct pairs across the 
entire text collection were identified, and the number of times each occurs in each text was 
counted. A fragment of the resulting data matrix exemplifies this.

1. hw 2. we 3. fe ... 841. jm

Exodus 35 149 125 ... 0

Sawles Warde 52 147 45 ... 0

... ... ... ... ... ...

King James 0 42 36 ... 0

The matrix was normalized to compensate for variation in document length, and truncated to the 
most important 100 letter pairs. Details of normalization and truncation are available in (Moisl 2015,
ch. 3).

3.4.3 The self-organizing map (SOM)
The self-organizing map (Kphonen 2001) is a topological mapping method. It is an artificial neural 
network that was originally invented to model a particular kind of biological brain organization, but 
that can also be used without reference to neurobiology as a way of visualizing high-dimensional 
data manifolds by projecting and displaying them in low-dimensional space. It has been extensively
and successfully used for this purpose across a wide range of disciplines. Figure 7 shows the 
architecture of the SOM.

Figure 7: SOM architecture

An n-dimensional data vector is loaded into the input units. These values are propagated along the
connections in such a way that the data vector is assigned to one of the cells on the two-
dimensional projection surface; only a selection of connections is shown, and in reality every input 
unit is connected to every projection surface cell. Once every input vector has been projected onto 
the surface, the topology of the n-dimensional data manifold has been mapped onto the two-
dimensional projection space, where it is available for visual inspection.

The variation in connection strengths is key to successful topological mapping, and these 
connections are learned from the data. Details of how this learning proceeds are fairly complex, 
and are not presented here.



3.4.4 Result
The result of the SOM projection is shown in Figure 8.

The labels are anchored on the left, that is, '1600ShakespeareHamlet' is, for example, located at 
the initial '1' on the map. As can be seen, the projection from the 100-dimensional data matrix onto 
a two-dimensional surface has clustered the texts in accordance with what is independently known 
of their dates. 

Conclusion
Topological mapping is widely applicable to data abstracted from multi-text historical linguistic 
corpora:

• Where the characteristics of the corpus language are well known, as for the well-studied 
European languages, topological mapping can be used to bestow the fundamental scientific
characteristics of objectivity and replicability on them.

• Where they are less well known, as for corpora in non-European languages, it can be used 
to identify objective, replicable geographical and relative chronological distributions.
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