

QUALICO 2018

International Quantitative Linguistics Conference July 5-8, Wroclaw, Poland

DO LINGUISTIC LAWS EMERGE FROM VOICE?

Antoni Hernández Fernández

antonio.hernandez@upc.edu

Complexity and Quantitative Linguistics Lab, Laboratory for Relational Algorithmics, Complexity and Learning (LARCA), Departament de Ciències de la Computació / Institut de Ciències de l'Educació

OUR GROUP

Complexity and Quantitative Linguistics Lab, **Laboratory for Relational Algorithmics, Complexity and Learning (LARCA)**, Departament de Ciències de la Computació /Institut de Ciències de l'Educació

> https://recerca.upc.edu/larca/en https://www.cs.upc.edu/~cqllab/

COLLABORATORS IN THIS WORK

Iván González-Torre (The Hand-Walker Artist)

Bartolo Luque

Jordi Luque

REFERENCES

[1] Luque, J., Luque, B. & Lacasa, L. (2015). Scaling and universality in the human voice. J. R. Soc. Interface 12, 20141344. doi: 10.1098/rsif.2014.1344

[2] Ferrer-i-Cancho, R., Hernández-Fernández, A., Lusseau, D., Agoramoorthy, G., Hsu, M. J. and Semple, S. (2013). Compression as a Universal Principle of Animal Behavior. *Cognitive Science*, 37: 1565–1578. doi:10.1111/cogs.12061

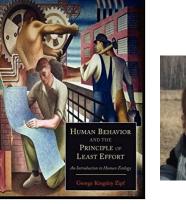
This conference:

[3] González Torre, I., Luque, B., Lacasa, L., Luque, J. & Hernández-Fernández, A. **Emergence** of linguistic laws in human voice. *Scientific Reports* 7, 43862 (2017). doi:10.1038/srep43862

 [4] González Torre, I., Luque, B., Lacasa, L., Luque, J. & Hernández-Fernández, A. On the physical magnitudes of phonemes in English and Spanish (2018). *In preparation* [5] Hernández-Fernández, A., González Torre, I., Lacasa, L. Luque, J. & Luque, B. Do linguistic laws emerge from voice? (2018). *In preparation*

CONTENTS

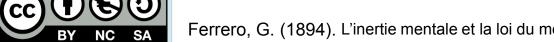
- Introduction: Theoretical framework
- Scaling laws
- Materials & Methods
- Results
- Discussion and open questions


- Theoretical framework
- Scaling laws
- Materials & Methods
- Results
- Discussion and open questions

THE QUESTION(S)

How to explain Linguistic Laws theoretically?

•Least Effort Ferrero (1894); Zipf (1949) •Compression Principle and/or other principles from Information Theory (maximization of mutual information, minimization of entropy...)...



ncho et al (2013)

Ferrer i Cancho et al (2013) Dębowski (2015, 2018 in prep) Ferrer i Cancho (2018)

Evidence from voice or from texts? Are both sources "equal"?

Ferrero, G. (1894). L'inertie mentale et la loi du moindre effort. *Revue Philosophique de la France et de l'Étranger*, 37, 169–182.

Ł. Dębowski, (2015). The Relaxed Hilberg Conjecture: A Review and New Experimental Support. Journal of Quantitative Linguistics, vol. 22, pp. 311–337.

Ramon Ferrer-i-Cancho (2018) Optimization Models of Natural Communication, *Journal of Quantitative Linguistics*, 25:3, 207-237, DOI: <u>10.1080/09296174.2017.1366095</u>

Theoretical framework

- Materials & **Methods**
- **Results**
- Discussion and open questions

TEXT vs **VOICE**

- Scaling laws Empirical evidence of robust linguistic laws holding in written texts across different human languages has been reported many times (Baayen, 2001; Altmann & Gerlach, 2016), and it has been shown that these laws are not observed in random texts (Ferrer-i-Cancho & Elvevag, 2010)
 - **Text** is interesting but...
 - ... is a product of our **TECHNOLOGY** (Scripture).
 - ... inferences of statistical patterns of language in acoustics are biased by the arbitrary segmentation of the signal (language dependent), and virtually precludes the possibility of making (not-biased) comparative studies between human voice and other animal communication systems.

Altmann, E. G. & Gerlach, M. (2016). Statistical Laws in Linguistics. In Creativity and Universality in Language, Lecture Notes in Morphogenesis (eds Degli Esposti, M., Altmann, E. & Pachet, F.) 7-26 (Springer, Cham, 2016).

Baayen, H. (2001). Word frequency distributions 18 (Springer Sci. & Business Media, 2001)

Ferrer-i Cancho, R. & Elvevag, B. (2010). Random texts do not exhibit the real Zipf 's law-like rank distribution. PLoS One 5, e9411

González-Torre et al (2017)

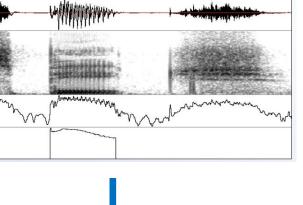
González-Torre et al (2017)

- Theoretical framework
- Scaling laws
- **Methods**
- Results
- and open questions

Materials &

- Discussion

TEXT vs **VOICE**



- Studies with oral corpus are much less abundant, and they imply:
 - a transcription of the acoustical waves into words (case of human speech) - or some ill-defined analog of words (animal communication)
 - ... as the main segments to analyze statistically.

for extraterrestrial intelligence. Acta Astronaut., 68, 406-417.

This problem leads researchers to **manually segment** acoustic signals guided by their expertise and prevents to explore signals of unknown origin (Doyle et al, 2011).

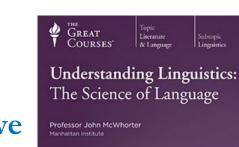
Doyle, L., McCowan, B., Johnston, S. & Hanser, S. (2011) Information theory, animal communication, and the search

Diachtics							
ņ d	Voiceless	$t^{\gamma} d^{\gamma}$	Velarized	d٦	No audible release	ę	Retracted tongue root
şđ	Voiced	$t^{\varsigma} d^{\varsigma}$	Pharyngealized	ņ	Syllabic	ş	More rounded
$t^{h} d^{h}$	Aspirated	b a	Breathy voiced	ẽ	Nasalized	Ş	Less rounded
ţ₫	Dental	b a	Creaky voiced	ð	Rhoticity	ų	Advanced
ţ₫	Apical	ţd	Linguolabial	ĕ	Non-Syllabic	ē	Retracted
ţd	Laminal	ł	Velarized / pharyngealized	ę	Raised	ë	Centralized
$t^{\rm w}\;d^{\rm w}$	Labialized	d^n	Nasal release	ę	Lowered	ě	Mid-centralized
t ^j d ^j	Palatalized	d^1	Lateral release	ę	Advanced tongue root		

González-Torre et al (2017)

- Theoretical framework
- Scaling laws
- Materials & Methods
- Results

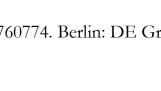
Discussion and open questions **TEXT** vs **VOICE**


It involves two major problems in communication studies:

(i) The **impossibility of performing fully objective comparative studies** between human and non-human signals.

(ii) A rather arbitrary definition of the units of study guided by **ortographic conventions** already **produces non-negligible epistemological problems at the core of Linguistics** (Bunge, 1984; Köhler, 2005).

Bunge, M. (1984) What is pseudoscience? The Skeptical Inquirer 9, pp. 36-46.


Kohler, R. (2005) Synergetic linguistics. In Quantitative linguistics 760774. Berlin: DE Gruyter.

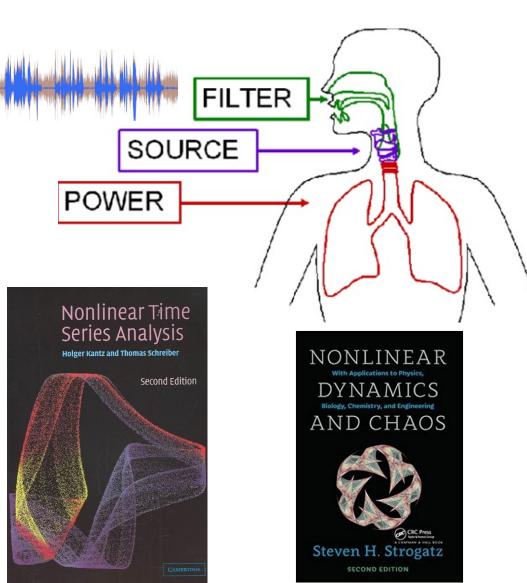
- Theoretical framework
- Scaling laws
- Materials & **Methods**
- **Results**
- Discussion and open questions

Do linguistic laws emerge from voice?

- •What is the origin of the linguistic laws that we know (Zipf's law,
- brevity law...)?

(TECHNICAL APPLICATIONS, SPEECH TECHNOLOGIES)

- •Have they a **physiological** (physical) origin? Ferrer i Cancho et al (2013); Luque et al (2015)
- •Could they be **Scaling Laws/SOC**? Luque et al (2015)



- Theoretical framework
- Scaling laws
- Materials & Methods
- Results
- Discussion and open questions

Luque et al (2015)

SPEECH SYNTHESIS

• Speech synthesis software fail to be "natural" so engineers introduce "**residuals**" in synthesis algorithms (small pieces of real human voice)

• Sure, because human voice evidences **nonlinearities** at fine grained level (**deviations from source filter theory which is linear and assumes voice is a combination of Gaussians**)₁₁ • Theoretical framework

- Scaling laws
- Materials & Methods
- Results
- Discussion and open questions

Luque et al (2015)

SCALING LAWS

Scaling law (SL) is a functional relationship between two quantities, independent of the initial size of those quantities: one quantity varies as a power of another (POWER LAW).

Self-Organized Criticality (SOC) is

a property of dynamical systems that have a critical point as an attractor. (Bak et al, 1987) SOC is a phenomenon observed in complex systems of multiple interacting components, that **produce power-law distributed avalanche sizes**. (Hoffman & Payton, 2018) <u>Bak, P., Tang, C.</u> and <u>Wiesenfeld, K.</u> (1987). «Self-organized criticality: an explanation of the 1/f noise». <u>Physical Review</u> Letters **59**: 381-384. doi:10.1103/PhysRevLett.59.381 UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

PER BAK how nature works the science of self-organized criticality

- Theoretical framework
- Scaling laws
- Materials & Methods
- Results
- Discussion and open questions

SL in human voice?

The equivalence of power laws with a particular scaling exponent can have a deeper origin in the dynamical processes that generate the power-law relation.

Luque et al (2015)

https://commons.wikimedia.org/wiki/File:Major_levels_of_linguistic_structure.svg

PRAGMATICS SEMANTICS SYNTAX MORPHOLOGY PHONOLOGY JONETIC ech soul Phonemes words literal meaning of phrases and sentences meaning in context of discourse

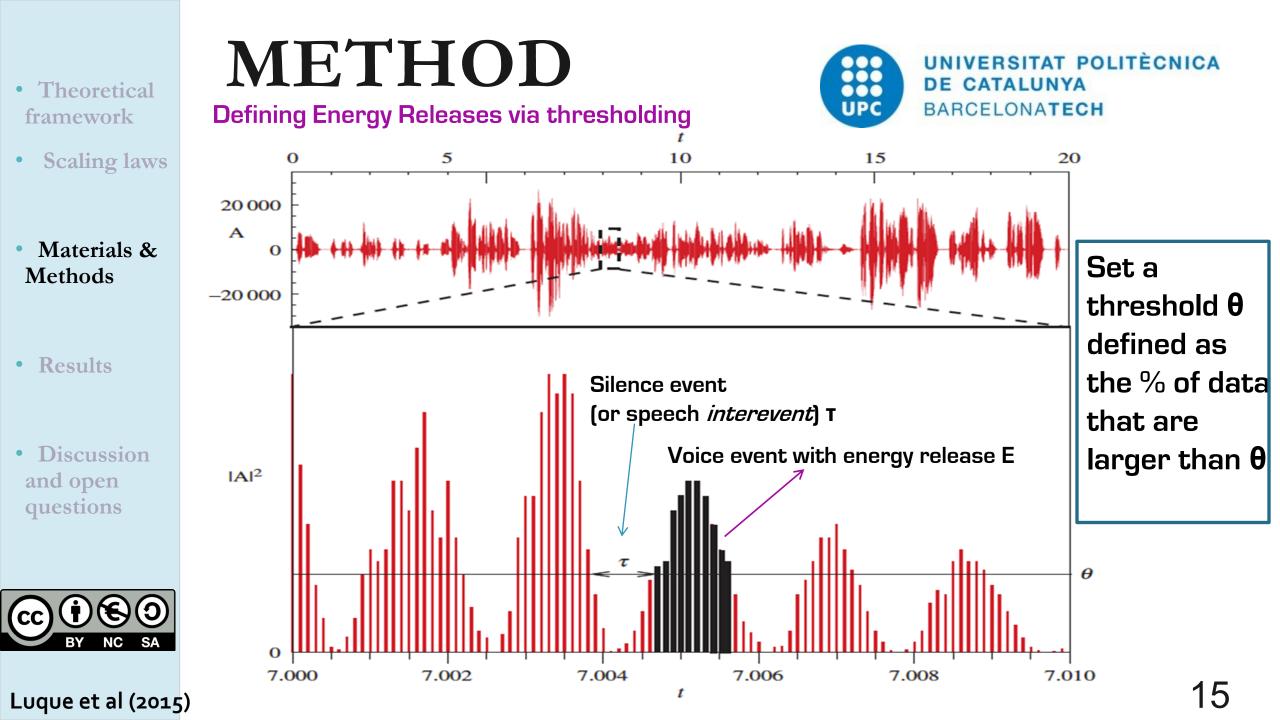
- Theoretical framework
- Scaling laws
- Linguistic laws
- Materials & Methods
- Results

• Discussion and open questions

MATERIALS

Dataset 1: KALAKA2

- TV broadcast speech dataset
- 4 hours per language



- 6 languages (Basque, Catalan, Galician, Spanish, Portuguese and English)
- Different conditions (planned & spontaneous speech, different environments, excluding telephonic channel)
- CD quality (16 bit / 44.1 kHz / stereo) Roland Edirol R-09 ultralight digital audio recorder
- Signals downsampled at 16kHz, left & right channel averaged via SoX and stored in WAV

Dataset 2: NIST Language Recognition Evaluation 1996

- conversations drawn mainly from LDC Friendcall corpus
- 2—4 hours per language
- 11 languages (English, Arabic, French, Mandarin, German, Hindi, Japanese, Spanish, Korean, Tamil, Vietnamese).
- several speakers from several conversations but speaking the same language
- signals correspond to one side of a 4-wire telephonic conversation
- standard 8 bit 8kHz mu-law digital telephone data
- samples converted into 2byte PCM digital format

González-Torre et al (2017)

- Theoretical framework
- Scaling laws
- Materials & **Methods**
- **Results**
- Discussion and open questions

Luque et al (2015)

METHOD

•During speech, the energy

is unevenly released and power-

(Gutenberg–Richter law)

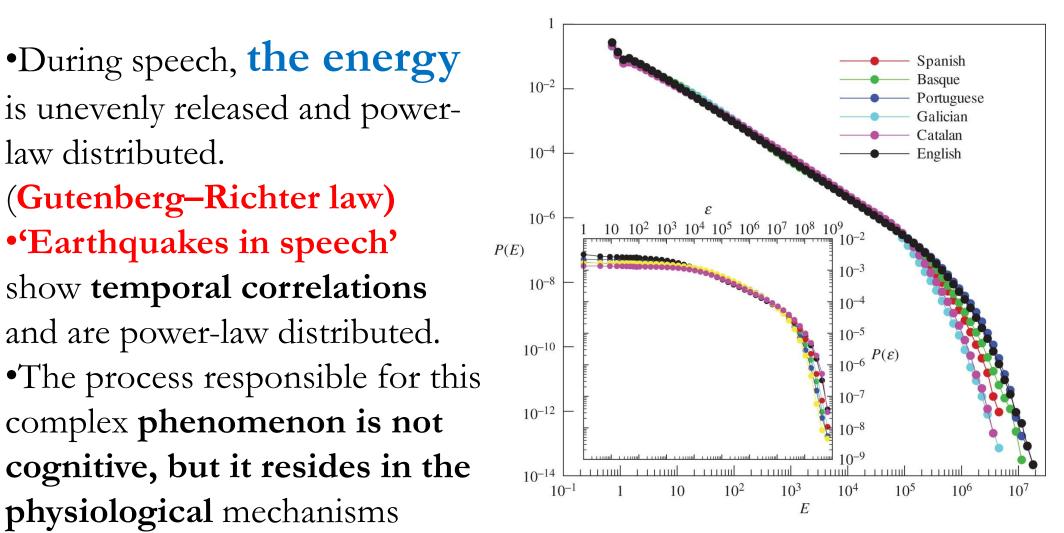
•'Earthquakes in speech'

show temporal correlations

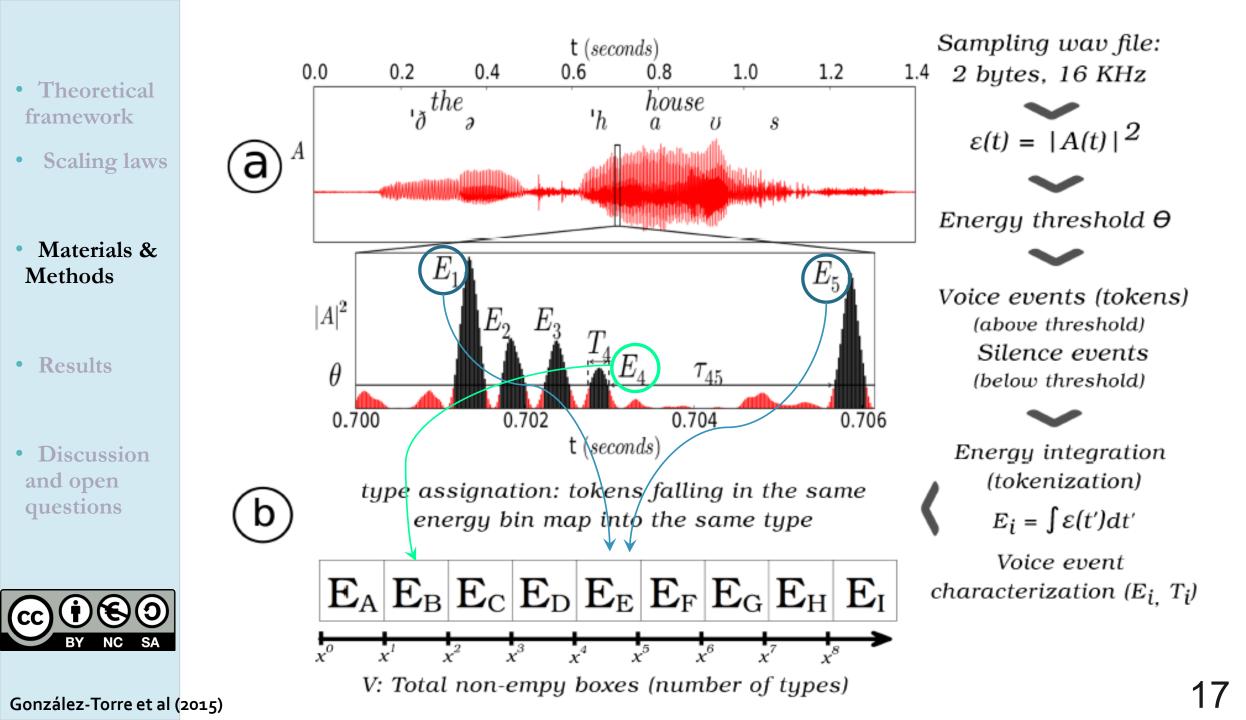
and are power-law distributed.

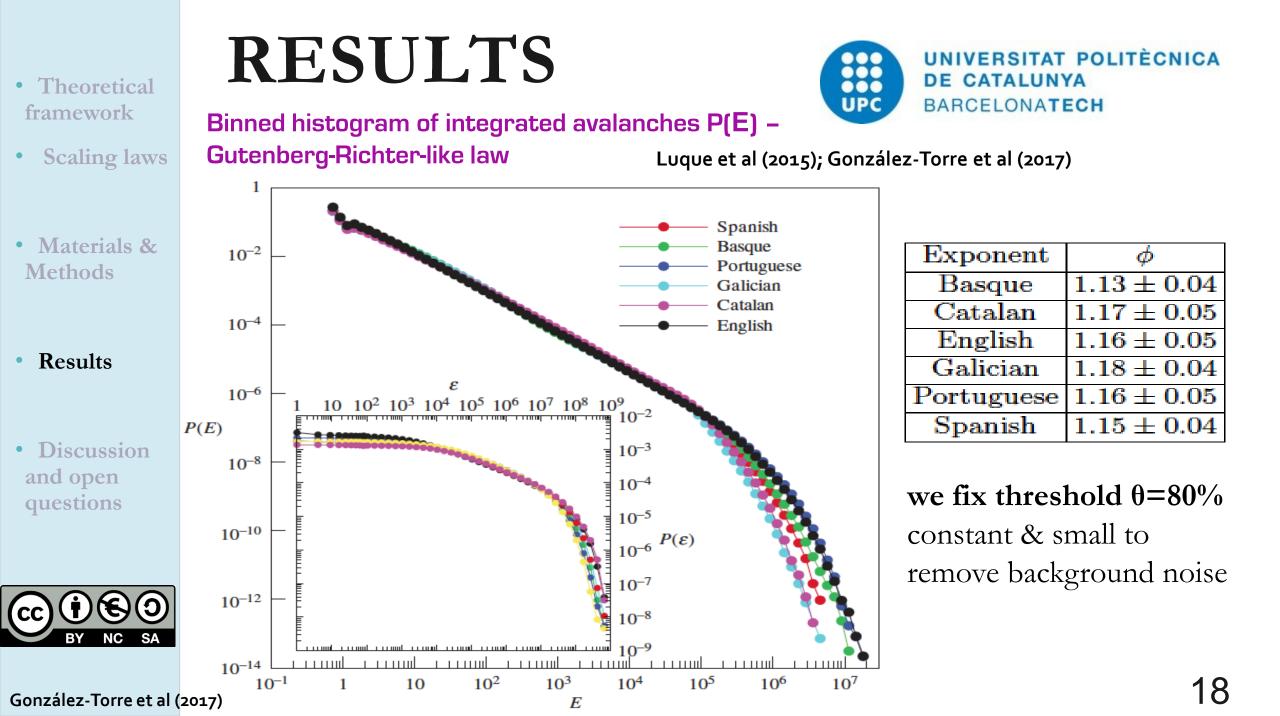
complex phenomenon is not

physiological mechanisms


cognitive, but it resides in the

(alveolar) of speech production.

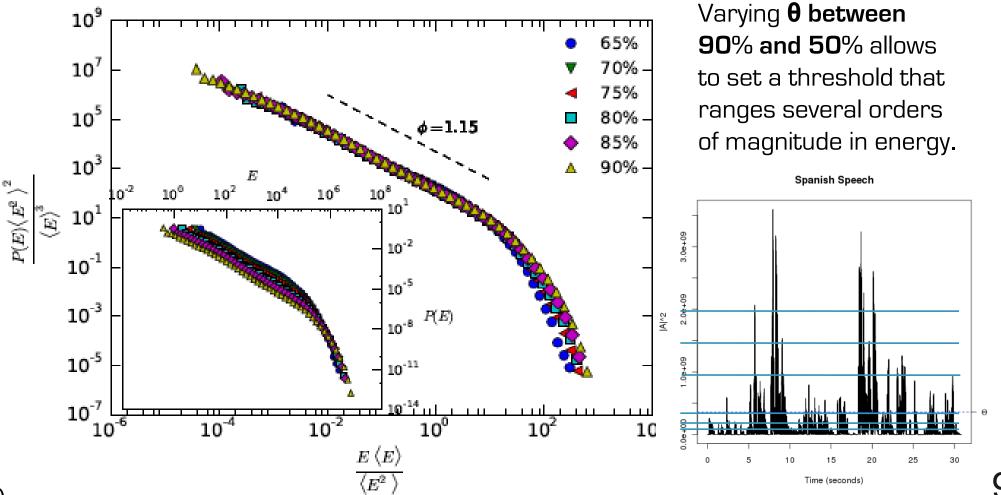

law distributed.


Previous Work

UNIVERSITAT POLITÈCNICA 000 **DE CATALUNYA** 000 BARCELONATECH UPC

Luque et al (2015) 16

- Theoretical framework
- Scaling laws
- Materials & **Methods**
- **Results**
- Discussion and open questions



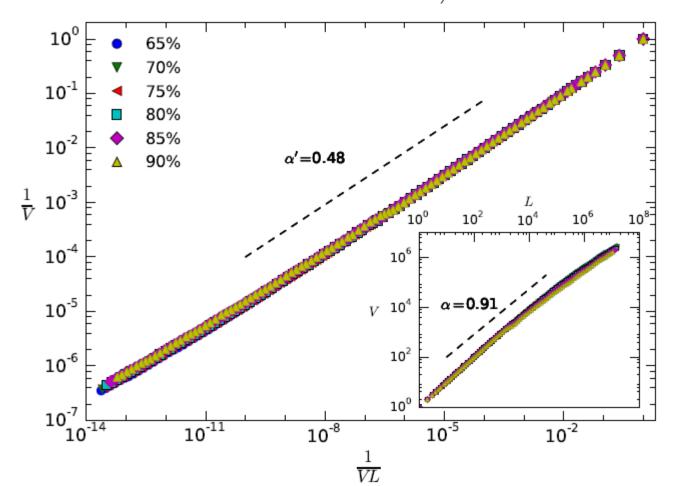
RESULTS

P(E) – Gutenberg-Richter-like law

Results are independent of the threshold (invariant under rescaling) $E \to E \langle E \rangle / \langle E^2 \rangle, \ P_{\Theta}(E) \to P_{\Theta}(E) \langle E^2 \rangle^2 / \langle E \rangle^3.$

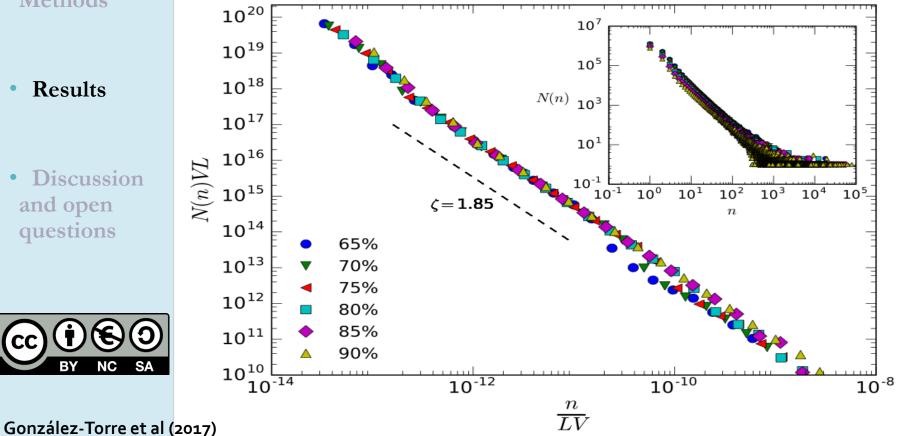
González-Torre et al (2017)

- Theoretical framework
- Scaling laws
- Materials & Methods
- Results
- Discussion and open questions



González-Torre et al (2017)

Sublinear growth of the number of different elements V in a text with text size L $V \sim L^{\alpha}, \ \alpha < 1$

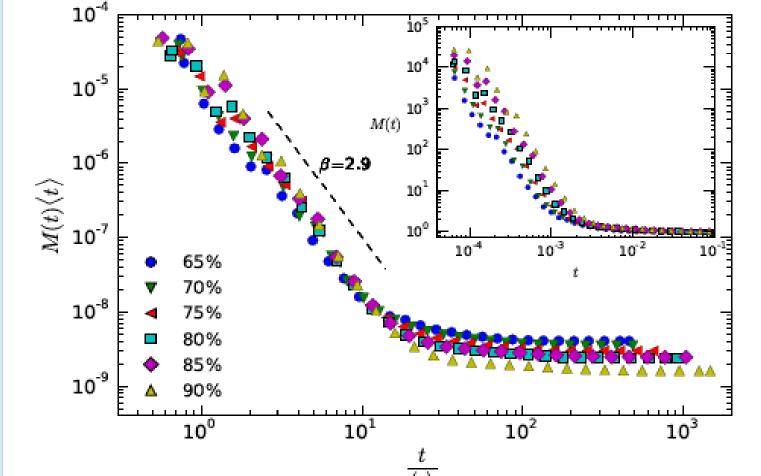


Log-log plot of the Heaps' law for the **Portuguese sample** (KALAKA) and several thresholds. In the inner panel we show how different **tokens (V)** increases sublinearly with **the size of the series (L)**, where the slope can be estimated properly for about three decades.

- Theoretical framework
- Scaling laws
- Materials & **Methods**
- Results
- Discussion and open questions

UNIVERSITAT POLITÈCNICA RESULTS **ZIPF's LAW DE CATALUNYA** UPC BARCELONATECH Number of different "words" (vocabulary) which occur exactly n times decays as $\mathcal{N}(n) \sim n^{-\zeta}$ (or) number of times the word with rank **r** occur decays as $n(r) \sim r^{-z} \qquad z = \frac{1}{\zeta - 1}$

- Theoretical framework
- Scaling laws
- Materials & Methods
- Results
- Discussion and open questions



RESULTS

ZIPF'S BREVITY LAW

Tendency of more frequent *words* to be shorter or smaller (Zipf 1935).

Log-log plot in the case of **English** (KALAKA), for several thresholds. In the upper panel we plot the histogram M(t) that describes the relative frequency of a type of mean duration t.

RESULTS SUMMARY

- Theoretical framework
- Scaling laws
- Materials & Methods
- Results
- Discussion and open questions

González-Torre et al (2017)

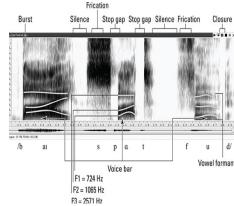
Exponent	ϕ	ζ	α	eta
Basque		1.77 ± 0.14		I I
Catalan		1.89 ± 0.14		
English	1.16 ± 0.05	1.85 ± 0.14	0.91 ± 0.01	2.9 ± 0.3
Galician	1.18 ± 0.04	1.80 ± 0.14	0.89 ± 0.03	2.9 ± 0.4
Portuguese	1.16 ± 0.05	1.77 ± 0.14	0.91 ± 0.01	3.0 ± 0.3
Spanish	1.15 ± 0.04	1.79 ± 0.14	0.91 ± 0.03	2.8 ± 0.4

TABLE I: Summary of scaling exponents associated to the energy release distribution (ϕ), Zipf's law (ζ), Heaps' law (α) and Brevity law (β) for the six different languages. Power law fits are performed using maximum likelihood estimation (MLE) following Clauset [71] and goodness-of-fit test and confidence interval are based on Kolmogorov-Smirnov (KS) tests. In all cases, KS are greater than 0.99. Exponents associated to energy release are compatible with those found in rainfall [70]. Results are compatible with the hypothesis of languageindependence.

- Theoretical framework
- Scaling laws
- Materials & Methods
- Results
- Discussion and open questions

DISCUSSION

- Human voice manifests the **analog of classical linguistic laws** found in written texts (Zipf 's law, Heaps' law and the brevity law) **in this level.**
 - •These laws are invariant under changes of the energy threshold Θ . As Θ is the only free parameter of the method, this invariance determines that the results are not afflicted by ambiguities associated to arbitrarily defining unit boundaries.
 - •Results are robust across a list of 16 different languages (indoeuropean and non-indoeuropean) and across timescales, energy threshold and conversational modes.


- Theoretical framework
- Scaling laws
- Materials & **Methods**
- Results
- Discussion and open questions

DISCUSSION

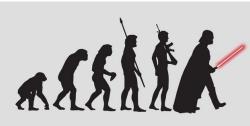
- •Interpreting linguistic laws as **Scaling Laws** which emerged in communication systems actually opens the door for speculating on the existence of underlying scaleinvariant (physical) laws operating underneath.
- •The specific and complex alternation of air stops (silences) intertwined with voice production are at the core of the microscopic voice fluctuations (SOC?).
- First observation of scaling behavior with a clear exponent in the case of brevity law in speech. Our finding of a power law in brevity law differs from the case of random typing where a power law doesn't conform. González-Torre et al (2017)

- Theoretical framework
- Scaling laws
- Materials & Methods
- Results
- Discussion and open questions

Luque et al (2015)

DISCUSSION

- We are able to map an arbitrary acoustic signal into a sequence of types separated by silence events.
- •Standard linguistic laws can then be directly explored in acoustic signals without needs to have an *a priori* **knowledge neither of the signal code nor of the adequate segmentation process** or the particular syntax of the **language** underlying the signal.
- •This protocol can be used to make unbiased comparisons across different systems (comparative studies): Universal Segmentation Method.


- Theoretical framework
- Scaling laws
- Materials & Methods
- Results
- Discussion and open questions

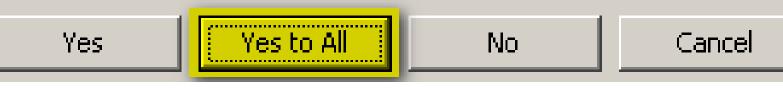
OPEN QUESTIONS

- •What are the values of the exponents indicating (in this level under the phoneme)?
 - •How can we connect these findings with **information theory?**
 - Emergence of ("linguistic") **Scaling Laws** already at the voice level: another hint of **complexity**? Is the system operating close to a critical point?
 - •Is there any evolutive gain?

• Relation with traditional linguistic laws (in upper levels)?

- Theoretical framework
- Scaling laws
- Materials & Methods
- Results

Discussion and open questions



OPEN QUESTIONS

- Is **physiology** the ultimate reason of the onset of complexity and SL (linguistic laws) in communication?
- Is it necessary to study other "forgotten" physical magnitudes (**Energy**: Guttenberg-Richter...)?
- Instead of introducing pieces of real speech (residuals): Is it better to model speech fluctuations at intraphoneme via simple SOC models?

Do linguistic laws emerge from voice?

QUALICO 2018

International Quantitative Linguistics Conference July 5-8, Wroclaw, Poland

July 7th, 2018

THANK YOU FOR YOUR ATTENTION! Dziękuję bardzo!

Iván González-Torre, Bartolomé Luque, Lucas Lacasa, Jordi Luque & Antoni Hernández-Fernández Emergence of linguistic laws in human voice. Scientific Reports 7, 43862; doi: 10.1038/srep43862 (2017).

BARCELONATECH

UNIVERSITAT POLITÈCNICA antonio.hernandez@upc.edu

This research was supported by the grant TIN2017-89244-R from MINECO (*Ministerio de Economía, Industria y Competitividad*; Spanish Government), and the recognition 2017SGR-856 (MACDA) from AGAUR (*Generalitat de Catalunya*).

